Analysis of pairwise comparison matrices: an empirical research
نویسندگان
چکیده
Pairwise comparison (PC) matrices are used in multi-attribute decision problems (MADM) in order to express the preferences of the decision maker. Our research focused on testing various characteristics of PC matrices. In a controlled experiment with university students (N = 227) we have obtained 454 PC matrices. The cases have been divided into 18 subgroups according to the key factors to be analyzed. Our team conducted experiments with matrices of different size given from different types of MADM problems. Additionally, the matrix elements have been obtained by different questioning procedures differing in the order of the questions. Results are organized to answer five research questions. Three of them are directly connected to the inconsistency of a PC matrix. Various types of inconsistency indices have been applied. We have found that the type of the problem and the size of the matrix had impact on the inconsistency of the PC matrix. However, we have not found any impact of the questioning order. Incomplete PC matrices played an important role in our research. The decision makers behavioral consistency was as well analyzed in case of incomplete matrices using indicators measuring the deviation from the final order of alternatives and from the final score vector.
منابع مشابه
A Common Weight Multi-criteria Decision analysis-data Envelopment Analysis Approach with Assurance Region for Weight Derivation from Pairwise Comparison Matrices
Deriving weights from a pairwise comparison matrix (PCM) is a subject for which a wide range of methods have ever been presented. This paper proposes a common weight multi criteria decision analysis-data envelopment analysis (MCDA-DEA) approach with assurance region for weight derivation from a PCM. The proposed model has several merits over the competing approaches and removes the drawbacks of...
متن کاملEfficient weight vectors from pairwise comparison matrices
Pairwise comparison matrices are frequently applied in multi-criteria decision making. A weight vector is called efficient if no other weight vector is at least as good in approximating the elements of the pairwise comparison matrix, and strictly better in at least one position. A weight vector is weakly efficient if the pairwise ratios cannot be improved in all nondiagonal positions. We show t...
متن کاملPairwise comparison matrices: an empirical research
Our research focused on testing various characteristics of pairwise comparison (PC) matrices in controlled experiments. About 270 students have been involved in the test exercises and the final pool contained 450 matrices. Our team conducted experiments with matrices of different size obtained from different types of MADM problems. The matrix elements have been generated by different questionin...
متن کاملOn Saaty's and Koczkodaj's inconsistencies of pairwise comparison matrices
The aim of the paper is to obtain some theoretical and numerical properties of Saaty ’s and Koczkodaj ’s inconsistencies of pairwise comparison matrices (PRM ). In the case of 3 × 3 PRM, a differentiable one-to-one correspondence is given between Saaty ’s inconsistency ratio and Koczkodaj ’s inconsistency index based on the elements of PRM. In order to make a comparison of Saaty ’s and Koczkoda...
متن کاملAn application of incomplete pairwise comparison matrices for ranking top tennis players
Pairwise comparison is an important tool in multi-attribute decision making. Pairwise comparison matrices (PCM) have been applied for ranking criteria and for scoring alternatives according to a given criterion. Our paper presents a special application of incomplete PCMs: ranking of professional tennis players based on their results against each other. The selected 25 players have been on the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals OR
دوره 211 شماره
صفحات -
تاریخ انتشار 2013